

Article

Variable-Temperature F NMR and Theoretical Study of 1,9- and 1,7-CF(CF) and *C*- and *C*-CF(CF): Hindered CF Rotation and Through-Space *J* Coupling

Ivan E. Kareev, Gustavo Santiso Quiones, Igor V. Kuvychko, Pavel A. Khavrel, Ilya N. loffe, Ilya V. Goldt, Sergey F. Lebedkin, Konrad Seppelt, Steven H. Strauss, and Olga V. Boltalina *J. Am. Chem. Soc.*, **2005**, 127 (32), 11497-11504• DOI: 10.1021/ja051954y • Publication Date (Web): 21 July 2005 Downloaded from http://pubs.acs.org on March **25**, **2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 11 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Variable-Temperature ¹⁹F NMR and Theoretical Study of 1,9and 1,7-C₆₀F(CF₃) and C_{s} - and C_{1} -C₆₀F₁₇(CF₃): Hindered CF₃ Rotation and Through-Space J_{FF} Coupling

Ivan E. Kareev,^{†,‡} Gustavo Santiso Quiñones,§ Igor V. Kuvychko,^{||} Pavel A. Khavrel,[⊥] Ilya N. loffe,[⊥] Ilya V. Goldt,[⊥] Sergey F. Lebedkin,[‡] Konrad Seppelt.*,§ Steven H. Strauss.*," and Olga V. Boltalina*,",1

Contribution from the Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432 Russia, Forschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021 Germany, Institut für Anorganische und Analytische Chemie der Freien Universität, Berlin D14195 Germany, Chemistry Department, Moscow State University, Moscow 119992 Russia, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received March 27, 2005; E-mail: ovbolt@lamar.colostate.edu; steven.strauss@colostate.edu; seppelt@chemie.fu-berlin.de

Abstract: Milligram amounts of the new compounds 1,9- and 1,7-C₆₀F(CF₃) (ca. 85:15 mixture of isomers) and C₆₀F₃(CF₃) were isolated from a high-temperature C₆₀/K₂PtF₆ reaction mixture and purified to 98 mol % compositional purity by two-dimensional high-performance liquid chromatography using Buckyprep and Buckyclutcher columns. The previously observed compounds $C_{60}F_5(CF_3)$ and $C_{60}F_7(CF_3)$ were also purified to 90+ mol % for the first time. Variable-temperature ¹⁹F NMR spectra of the mixture of C₆₀F(CF₃) isomers and the previously reported mixture of C_{s-} and $C_{1-}C_{60}F_{17}(CF_3)$ isomers demonstrate for the first time that fullerene(F)n(CF₃)m derivatives with adjacent F and CF₃ substituents exhibit slow-exchange limit hindered CF₃ rotation spectra at -40 ± 10 °C. The experimental and density functional theory (DFT) predicted ΔH^{\pm} values for CF₃ rotation in 1,9-C₆₀F(CF₃) are 46.8(7) and 46 kJ mol⁻¹, respectively. The DFT-predicted ΔH^{\ddagger} values for 1,7-C₆₀F(CF₃), C_{s} -C₆₀F₁₇(CF₃), and C_{1} -C₆₀F₁₇(CF₃) are 20, 44, and 54 kJ mol⁻¹, respectively. The $\ge 4 J_{FF}$ values from the slow-exchange-limit ¹⁹F spectra, which vary from ca. 0 to 48(1) Hz, show that the dominant nuclear spin-spin coupling mechanism is through-space coupling (i.e., direct overlap of fluorine atom lone-pair orbitals) rather than coupling through the σ -bond framework. The ${}^{2}J_{FF}$ values within the CF₃ groups vary from 107(1) to 126(1) Hz. Collectively, the NMR data provide an unambiguous set of ^{≥4}J_{FF} values for three different compounds that can be correlated with DFT-predicted or X-ray diffraction derived distances and angles and an unambiguous set of ²J_{FF} values that can serve as an internal standard for all future J_{FF} calculations.

Introduction

We have been interested in the synthesis, characterization, and properties of fullerene $(X)_n$ derivatives with electronwithdrawing substituents for more than a decade (X = F, Cl, Br, CF_3).^{1,2} Recent examples of compounds we have isolated and structurally characterized by X-ray crystallography or by ¹⁹F NMR spectroscopy with corroborating density functional theory (DFT) calculations include $C_{2\nu}$ -C₇₀Br₁₀,² C_1 -Y@C₈₂-

[†] Institute of Problems of Chemical Physics.

 $(CF_3)_5$,³ D_{5d} - $C_{60}F_{20}$,^{4,5} T_h - $C_{60}F_{24}$,⁶ $C_{2\nu}$ - $C_{60}F_2$,^{7,8} and $C_{2\nu}$ - C_{60} - $(CF_3)_2$.^{9,10} The latter two compounds are especially interesting because they demonstrate the interplay of offsetting steric and electronic effects in determining the most stable isomers in fullerene $(X)_n$ compounds. DFT calculations indicate that the

- (3) Kareev, I. E.; Lebedkin, S. F.; Bubnov, V. P.; Yagubskii, E. B.; Ioffe, I. N.; Khavrel, P. A.; Kuvychko, I. V.; Strauss, S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. 2005, 44, 1846-1849.
- (4) Boltalina, O. V.; Markov, V. Y.; Troshin, P. A.; Darwish, A. D.; Street, J.
- M.; Taylor, R. *Angew. Chem., Int. Ed.* **2001**, *40*, 787–789. Popov, A. A.; Goryunkov, A. A.; Goldt, I. V.; Kareev, I. E.; Kuvychko, I. V.; Hunnius, W.-D.; Seppelt, K.; Strauss, S. H.; Boltalina, O. V. J. Phys. Chem. A **2004**, *108*, 11449–11456. (5)
- (6) Denisenko, N. I.; Troyanov, S., I.; Popov, A. A.; Kuvychko, I. V.; Žemva, B.; Kemnitz, E.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2004, 126. 1618-1619.
- (7) Boltalina, O. V.; Lukonin, A. Y.; Street, J. M.; Taylor, R. Chem. Commun. 2000, 1601–1602.
- (8) Clare, B. W.; Kepert, D. L. THEOCHEM 2003, 621, 211-231. (9)
- Goryunkov, A. A.; Kuvychko, I. V.; Ioffe, I. N.; Dick, D. L.; Sidorov, L. N.; Strauss, S. H.; Boltalina, O. V. J. Fluorine Chem. 2003, 124, 61-64.
- (10) Goryunkov, A. A.; Ioffe, I. N.; Kuvychko, I. V.; Yankova, T. S.; Markov, V. Y.; Streletskii, A. V.; Dick, D. L.; Sidorov, L. N.; Boltalina, O. V.; Strauss, S. H. Fullerenes Nanotubes Carbon Nanostruct. 2004, 12, 181-185

[‡] Institute for Nanotechnology.

[§] Freien Universität Berlin.

¹¹ Moscow State University.

[⊥] Colorado State University.

 ⁽a) Boltalina, O. V.; Galeva, N. A. *Russ. Chem. Rev.* 2000, *69*, 609–621.
 (b) Boltalina, O. V.; Goryunkov, A. A.; Markov, V. Y.; Ioffe, I. N.; Sidorov, L. N. *Int. J. Mass Spectrom.* 2003, *228*, 807–824. (c) Boltalina, O. V.; Strauss, S. H. In Dekker Encyclopedia of Nanoscience and Nanotechnology; Schwarz, J. A., Contescu, C., Putyera, K., Eds.; Marcel Dekker: New York, 2004; pp 1175-1190.

⁽²⁾ Troyanov, S. I.; Popov, A. A.; Denisenko, N. I.; Boltalina, O. V.; Sidorov, L. N.; Kemnitz, E. Angew. Chem., Int. Ed. 2003, 42, 2395-2398.

Figure 1. Schlegel diagrams of the most stable isomers of $C_{60}F_2$ (left) and $C_{60}(CF_3)_2$ (right). The isomer 1,9- $C_{60}F_2$ is predicted (DFT ΔH_f° values) to be 29.7 kJ mol⁻¹ more stable than 1,7- $C_{60}F_2$.⁸ Because of steric repulsion, however, the isomer 1,7- $C_{60}(CF_3)_2$ is predicted to be 34.7 kJ mol⁻¹ more stable than 1,9- $C_{60}(CF_3)_2$.^{9,10} The numbering scheme used is the one approved by the IUPAC¹¹ and the Chemical Abstracts Service.¹²

most stable isomer of $C_{60}F_2$ has fluorine atoms on the adjacent carbon atoms of a hex—hex junction (i.e., $1,9-C_{60}F_2)^8$ but that the most stable isomer of $C_{60}(CF_3)_2$ has CF_3 groups on a *p*-C₆-(CF₃)₂ hexagon (i.e., $1,7-C_{60}(CF_3)_2)$,^{9,10} as shown in Figure 1.^{11,12} This suggested that the 1,9 and 1,7 isomers of the previously unknown composition $C_{60}F(CF_3)$ might have comparable stability.

We now report the isolation of 1,9- and 1,7- $C_{60}F(CF_3)$ from a high-temperature C₆₀/K₂PtF₆ reaction mixture. Variabletemperature ¹⁹F NMR spectra show that the CF₃ group in the 1,9-isomer undergoes significantly slower rotation than the CF₃ group in the less hindered 1,7-isomer. Low-temperature ¹⁹F NMR spectra of the previously reported mixture of C_s and C_1 isomers of $C_{60}F_{17}(CF_3)$, for which CF_3 resonances had not been observed at 25 °C,13 show that restricted rotation of fullerene CF3 groups adjacent to fullerene C-F moieties may be a general phenomenon in the growing class of fullerene(F)_n(CF₃)_m compounds. Furthermore, an analysis of ${}^{19}\text{F} \ge {}^{4}J_{\text{FF}}$ values in the slow-exchange-limit spectra of 1,9-C₆₀F(CF₃), and the two isomers of C₆₀F₁₇(CF₃) show that the dominant coupling mechanism is through-space coupling (i.e., direct overlap of fluorine atom lone-pair orbitals) rather than through-bond coupling.

Experimental Section

Reagents and Solvents. The compound C_{60} (99.9% Term USA) was used as received. The compound K₂PtF₆ was obtained by treating K₂PtCl₆ with fluorine at 350 °C as previously described [Caution: F₂ is extremely hazardous and should be handled only by trained personnel].¹⁴ Toluene was high-performance liquid chromatography (HPLC) grade. Benzene-*d*₆ (Cambridge), chlorobenzene, trichlorofluoromethane, and hexafluorobenzene (Sigma-Aldrich) were dried over activated 4-Å molecular sieves and vacuum distilled.

Reaction of C₆₀ with K₂PtF₆. A finely ground mixture of C₆₀ (0.70 g, 0.97 mmol) and K₂PtF₆ (2.31 g, 5.97 mmol) was heated at 450 °C for 6 h under dynamic vacuum. The sublimed crude product mixture (0.763 g) was dissolved in toluene, filtered through a 0.45- μ m filter in order to remove insoluble inorganic byproducts, and processed by HPLC as follows.

Isolation of $C_{60}F_n(CF_3)$ (n = 1, 3, 5, 7). A two-stage chromatographic procedure was developed. At the first separation stage, a Cosmosil Buckyprep column (20 mm inside diameter (i.d.) × 250 mm, Nacalai Tesque Inc.) (1.8-mL injections, 18 mL/min flow rate, toluene eluent) was used, affording initial isolation of the fraction eluting between 8.5 and 13.5 min. This fraction was composed of three peaks: A, B, and C eluting at 8.8, 11, and 12.5 min, respectively. Matrixassisted laser desorption ionization mass spectroscopy (MALDI-MS) analysis revealed that peaks B and C contained $C_{60}O$ and $C_{60}F_2$, respectively, whereas peak A was composed of the two compounds C_{60} and $C_{60}F(CF_3)$. The latter composition has not been previously observed. The Cosmosil Buckyprep column proved to be ineffective for the separation of $C_{60}F(CF_3)$ from the significant amount of C_{60} that was present. However, a second HPLC purification stage using a Regis BuckyClutcher column (20 mm i.d. × 250 mm, Regis Chemical Co.; 0.6-mL injections, 12 mL/min flow rate, toluene eluent) afforded a satisfactory separation of the two compositions. The C60F(CF3) fraction eluted at 6.2 min, and 3-4-mg batches of 98% pure C₆₀F(CF₃) were collected (the purity was established by subsequent HPLC and MALDI-MS analysis). The C₆₀F(CF₃) fraction proved to be a mixture of 1,9- $C_{60}F(CF_3)$ and 1,7- $C_{60}F(CF_3)$. Both of these isomers and the composition $C_{60}F_3(CF_3)$ are new compounds.

Isolation of $C_{60}F_{17}(CF_3)$ (Mixture of Isomers). At the first, Cosmosil Buckyprep stage (20 mm i.d. × 250 mm, Nacalai Tesque Inc.) (18-mL injections, 1.8 mL/min flow rate, toluene eluent), a fraction eluting between 30 and 41 min was collected. At the second, Regis Buckyclutcher stage (20 mm i.d. × 250 mm, Regis Chemical Company; 1.2-mL injections, 12 mL/min flow rate, toluene eluent), a major fraction eluting at 9.5 min and containing 7–8 mg of the single composition $C_{60}F_{17}(CF_3)$ was collected (the compositional purity was demonstrated by subsequent MALDI-MS analysis). The shape of the 9.5-min HPLC peak suggested the presence of two approximately equal intensity components, which we concluded were the known C_s and C_1 isomers of $C_{60}F_{17}(CF_3)$.¹³ It was not necessary to separate the two isomers for this study, but in principle their separation could probably be achieved by using a toluene—heptane eluent instead of neat toluene.

Spectroscopic Methods. MALDI mass spectra were recorded using a Voyager-DE PRO Workstation (Applied Biosystems). Sulfur was used as the matrix material. It was mixed with the sample in toluene immediately prior to deposition on the target. Nitrogen laser pulses of 337-nm wavelength, 0.5-ns duration, and 3-Hz frequency were used to desorb the species into the gas phase. The negative or positive ions formed were detected in reflectron mode. Samples for ¹⁹F NMR spectroscopy were chlorobenzene or toluene-*d*₈ solutions and were recorded using a JEOL JNM-LA 400 (Berlin; CFCl₃ internal standard, δ 0) or a Bruker INOVA-400 spectrometer (Fort Collins; C₆F₆ internal standard, δ –164.9) operating at 376 MHz.

X-ray Crystallography. Cube-shaped crystals of the mixture of 1,9and 1,7-C₆₀F(CF₃) were formed by slow evaporation of solvent from a toluene solution. A black crystal that was 0.05 mm diameter was examined by X-ray diffraction at the Berlin Electron Synchrotron Radiation source BESSY at -120 °C (the X-ray wavelength was 0.900 Å). Refinement of 800 reflections showed the crystals to be cubic with a = 22.699(3) Å. The extinctions were clearly consistent with the space group *I*2₁3 (No. 199). By assumption that Z = 12 (i.e., 15 Å³/atom), there is a 6-fold or greater disorder of the molecules in the lattice. No reasonable solution for the crystal structure could be obtained.

DFT Calculations. Predicted molecular structures, relative $\Delta H_{\rm f}^{\circ}$ values, and ¹⁹F NMR chemical shifts^{15,16} were determined with the PRIRODA package¹⁷ using the GGA functional of Perdew, Burke, and Ernzerhof (PBE)¹⁸ and the TZ2P {6,1,1,1,1,1/4,1,1/1,1} basis set. The ¹⁹F isotropic magnetic shielding constants were calculated for the four molecules that are the subject of this paper and for a set of

⁽¹¹⁾ Powell, W. H.; Cozzi, F.; Moss, G. P.; Thilgen, C.; Hwu, R. J. R.; Yerin, A. Pure Appl. Chem. 2002, 74, 629–695.
(12) Goodson, A. L.; Gladys, C. L.; Worst, D. E. J. Chem. Inf. Comput. Sci.

 ⁽¹²⁾ Goodson, A. L.; Gladys, C. L.; Worst, D. E. J. Chem. Inf. Comput. Sci. 1995, 35, 969–968.
 (12) D. L. M. W. L. L. D. D. T. Li, D. A. Guard, J. M. T. L. D.

⁽¹³⁾ Boltalina, O. V.; Hitchcock, P. B.; Troshin, P. A.; Street, J. M.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 2000, 2410–2414.

⁽¹⁴⁾ Goldt, I. V. Ph.D. Dissertation, Moscow State University, Moscow, Russia, 2004.

^{(15) (}a) Batayev, V. A.; Abramenkov, A. V.; Godunov, I. A. Struct. Chem. 2004, 15, 31. (b) Abramenkov, A. V. Russ. J. Phys. Chem. 1995, 69, 1048.

 ⁽¹⁶⁾ Fukaya, H.; Ono, T. J. Comput. Chem. 2004, 25, 51–60.
 (17) Laikov, D. N. Chem. Phys. Lett. 1997, 281, 151–156.

⁽¹⁸⁾ Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1996**, 77, 3865–3868

experimentally characterized reference compounds including fluorofullerenes1 and small molecules containing CF3 groups such as perfluorocarbons and perfluorinated ethers and ketones.16 Effective 1D rotational potentials were used to model the internal rotations of the CF₃ groups. For a given CF₃ group, this potential was calculated for a series of fixed conformations by optimizing the remaining molecular degrees of freedom. The determination of rotational eigenstates for the potential thus obtained allowed the derivation of a temperaturedependent conformational probability-density distribution, which was further convoluted with the calculated conformational dependence of the isotropic shielding to give the average shielding constant for a given temperature (the program TORSIO15 was used for numerical integration of the Schrödinger equation). For moderate temperatures and rotational barriers above 15 kJ mol⁻¹, this procedure, although generally preferable, rarely gave a shielding constant significantly different than simple averaging over three frozen equilibrium conformations of the CF3 group. Linear regression of experimental δ values vs calculated shielding constants for the reference molecules provided relevant scaling and offset parameters (different sets of parameters were established for CF₃ fluorine atoms and for fullerene-cage C-F fluorine atoms).

Results and Discussion

Preparation and Isolation of C₆₀F(CF₃) and C₆₀F₃(CF₃). The high-temperature reaction of a finely ground mixture of C₆₀ and K₂PtF₆, first reported in 1996,¹⁹ can be optimized to produce a 60-70% isolated yield of 90+% compositionally pure $C_{60}F_{18}\!^{\ 20}$ The remainder of the mixture of products has been shown to contain unreacted C₆₀ and small amounts of dozens of other fluorofullerenes and fluorofullerene derivatives. Those that have been purified by HPLC using Cosmosil Buckyprep columns and isolated, generally in milligram or sub-milligram amounts, as a reasonably pure single compound or a mixture of two compounds include C₆₀F₂ and C₆₀F₂O,⁷ C₆₀F₄, C₆₀F₆, and $C_{60}F_8$,²¹ and $C_{60}F_{17}(CF_3)$.¹³

We recently reported the use of a Regis Buckyclutcher HPLC column, routinely used for the purification of endohedral metallofullerenes,²² to separate the compound $C_{60}F_{20}^4$ from impurities that coeluted with it in a Buckyprep column, including C₆₀F₁₂, C₆₀F₁₄, and C₆₀F₂₀O.⁵ This successful two-dimensional Buckyprep/Buckyclutcher HPLC procedure has now been applied to the reaction products of a 450 °C reaction of C₆₀ and K₂PtF₆. A plot of Buckyprep vs Buckyclutcher retention times for selected compounds is shown in Figure 2. Three new compounds, $C_{60}F(CF_3)$ (two isomers) and $C_{60}F_3(CF_3)$, have been isolated, and the previously observed compounds $C_{60}F_5(CF_3)$ and $C_{60}F_7(CF_3)^{21}$ have been isolated in 90+ mol % compositional purity for the first time.

The crude reaction product contained mostly C₆₀F₁₈ and unreacted C₆₀. It was prepurified by HPLC using a Buckyprep column. An 8.8-11.3-min fraction was then purified by the twodimensional Buckyprep/Buckyclutcher procedure, as shown in Figure 3. A narrow cut of the Buckyclutcher separation centered at 6.2 min was rechromatographed two more times using the Buckyclutcher column to afford 3-4 mg batches of a mixture of two isomers of $C_{60}F(CF_3)$, both of which are new compounds. A combination of subsequent HPLC analysis, S₈-MALDI mass

Figure 2. HPLC retention times for C_{60} , $C_{60}F_n$ derivatives (n = 2, 4, 6, 6) 8), and $C_{60}F_n(CF_3)$ derivatives (n = 1, 3, 5, 7). The Buckyclutcher and Buckyprep column eluent rates were 12 and 18 mL toluene/min, respectively.

Figure 3. HPLC traces for the separations of C₆₀F(CF₃) (mixture of isomers) from the 450 °C C₆₀/K₂PtF₆ reaction products. The Buckyprep and Buckyclutcher column eluent rates were 18 and 12 mL toluene/min, respectively.

Figure 4. Positive- and negative-ion S8-MALDI mass spectra of purified C₆₀F(CF₃). The peaks marked with asterisks are due to the closed-shell fragment ions $C_{60}CF_3^+$ and $C_{60}F^+$.

spectra (shown in Figure 4), and an ¹⁹F NMR spectrum (vide infra) demonstrated that the compositional purity of this mixture of isomers was ca. 98 mol %. The HPLC traces in Figure 3 clearly show why these compounds had not been previously identified, let alone separated, from the much larger amount of unreacted C₆₀ using only a Buckyprep HPLC column.

Similar Buckyprep/Buckyclutcher fractions yielded highly purified sub-milligram amounts of the new compound C₆₀F₃-(CF₃) and the compounds $C_{60}F_5(CF_3)$ and $C_{60}F_7(CF_3)$, which had only been previously observed as impurities in batches of C₆₀F₄ and C₆₀F₆, respectively.²¹ The negative-ion S₈-MALDI mass spectrum of purified $C_{60}F_3(CF_3)$ is shown in Figure 5. At the present time, an insufficient amount of $C_{60}F_3(CF_3)$ is available for a meaningful NMR analysis. Mass spectra of purified $C_{60}F_5(CF_3)$ and $C_{60}F_7(CF_3)$ are available as Supporting Information.

Isomers of C₆₀F(CF₃). The DFT-predicted relative $\Delta H_{\rm f}^{\circ}$ values for various 1,9- and 1,7-C₆₀XY isomers are listed in Table

⁽¹⁹⁾ Boltalina, O. V.; Markov, V. Y.; Taylor, R.; Waugh, M. P. Chem. Commun. 1996, 2549-2550. (20)

Goldt, I. V.; Boltalina, O. V.; Kemnitz, E.; Troyanov, S. I. Solid State Sci. **2002**, *4*, 1395–1401. Boltalina, O. V.; Darwish, A. D.; Street, J. M.; Taylor, R.; Wei, X.-W. *Perkin Trans.* 2 **2002**, 251–256. (21)

⁽²²⁾ Shinohara, H. Rep. Prog. Phys. 2000, 63, 843.

Figure 5. Negative-ion S₈-MALDI mass spectrum of purified C₆₀F₃(CF₃).

Table 1. DFT-Determined Relative Enthalpies of Formation for Isomers of C₆₀XY

 $1.^{8-10}$ The two most stable structures for X = Y = H, F, Cl, Br, CH₃, or CF₃ were also found to be the two most stable structures for $C_{60}F(CF_3)$. Furthermore, as expected, the 1,9 and 1,7 isomers of $C_{60}F(CF_3)$ are close in energy, with the former being 9.8 kJ mol⁻¹ more stable than the latter. The new data are entirely consistent with earlier conclusions⁸⁻¹⁰ that steric factors should play a major role in determining the relative amounts of 1,9- and 1,7-C₆₀X₂ isomers, at least when their formation is under thermodynamic control. The predicted equilibrium geometries of 1,9-C₆₀F(CF₃) and 1,7-C₆₀F(CF₃) have their respective CF₃ groups in a staggered conformation with respect to the three cage C-C bonds that radiate from the sp³ cage carbon atom bearing the CF3 group.

The prediction of two stable isomers of C₆₀F(CF₃) that are similar in energy is supported by the 19 F NMR data. The -40°C spectrum of the currently inseparable mixture of two principal C₆₀F(CF₃) isomers dissolved in chlorobenzene is shown in Figure 6, along with fragments of their DFT-predicted structures. The spectrum of proposed isomer $1,7-C_{60}F(CF_3)$ consists of two singlets in a 3:1 intensity ratio at δ -69.9 and -122.6, respectively. The lack of observable ${}^{6}J_{\text{FF}}$ coupling between the C-F and C-CF₃ fluorine atoms is consistent with the large number of intervening bonds and with the predicted 3.48-Å closest-approach distance of the two types of fluorine atoms, since through-space ${}^{>4}J_{\rm FF}$ coupling has not been observed or predicted for F···F distances significantly longer than 3 Å. $^{23-28}$ The spectrum of proposed isomer 1,9-C₆₀F(CF₃) consists of a triplet (intensity (int.) 1, F_B, δ -57.2, ${}^{2}J_{AB}$ = 113(1) Hz),

Figure 6. The -40 °C ¹⁹F NMR spectrum of a mixture of 1,9- and 1,7- $C_{60}F(CF_3)$ (376 MHz, chlorobenzene, $\delta(CFCl_3) = 0$). Also shown are drawings of fragments of the structures of the two isomers based on the DFT calculations. The $F_A \cdots F_X$ distances are 2.65 and 3.48 Å, respectively, in the 1,9 and 1,7 isomers. The peaks marked with asterisks are due to unidentified impurities.

a doublet of doublets (int. 2, F_A , δ -63.9, ${}^4J_{AX} = 43(1)$ Hz, ${}^{2}J_{AB} = 113(1)$ Hz), and a triplet (int. 1, F_X, $\delta - 139.3$, ${}^{4}J_{AX} =$ 43(1) Hz). For comparison, the DFT-calculated δ values are -72 and -127 for 1,7-C₆₀F(CF₃) and -57, -65, and -146 for 1,9-C₆₀F(CF₃).

The relative integrated intensities indicate that the $1.9-C_{60}F$ - $(CF_3)/1,7-C_{60}F(CF_3)$ mol ratio is approximately 85/15 or 5.6. If the formation of these two isomers is under thermodynamic control at the reaction temperature, 450 °C, and this is by no means certain, a K_{eq} value of 5.6 for the transformation 1,7- $C_{60}F(CF_3) \rightleftharpoons 1,9-C_{60}F(CF_3)$ would yield a $\Delta\Delta G_f$ value of -10.4kJ mol⁻¹ at 450 °C and a $\Delta\Delta H_{\rm f}$ value of -14.5 kJ mol⁻¹ when the statistical factor favoring the 1,7 isomer is taken into account. The latter value is in good agreement with the DFT $\Delta \Delta H_{\rm f}^{\circ}$ value of -9.8 kJ mol^{-1} listed in Table 1.

Hindered CF₃ Rotation. (a) 1,9-C₆₀F(CF₃). The portion of the -40 °C NMR spectrum assigned to $1.9-C_{60}F(CF_3)$ clearly indicates slow rotation of the CF3 group in this isomer (the coupling of F_X to two CF₃ fluorine atoms instead of one further demonstrates the staggered conformation of the CF₃ group). The DFT $\Delta\Delta H_{\rm f}^{\circ}$ value for the eclipsed conformation of 1,9-C₆₀F-(CF₃) relative to its staggered conformation, which can be assumed to be the barrier height for CF_3 rotation, is 46 kJ mol⁻¹. For comparison, the eclipsed conformation of $1,7-C_{60}F(CF_3)$ is only 20 kJ mol⁻¹ less stable than its staggered conformation,

⁽²³⁾ Barbarich, T. J.; Rithner, C. D.; Miller, S. M.; Anderson, O. P.; Strauss, S. H. J. Am. Chem. Soc. 1999, 121, 4280-4281.

⁽²⁴⁾ Barbarich, T. J.; Nolan, B. G.; Tsujioka, S.; Miller, S. M.; Anderson, O.

P.; Strauss, S. H. J. Fluorine Chem. 2001, 112, 335–342. Arnold, W. D.; Mao, J.; Sun, H.; Oldfield, E. J. Am. Chem. Soc. 2000, 122, 12164–12168. (2.5)

^{(26) (}a) Peralta, J. E.; Contreras, R. H.; Snyder, J. P. Chem. Commun. 2000, 2025–2026; Alkorta, I.; Elguero, J. E. Struct. Chem. 2004, 15, 117–120. (b) Tuttle, T.; Grafenstein, J.; Cremer, D. Chem. Phys. Lett. 2004, 394, -13.

⁽²⁷⁾ Peralta, J. E.; Barone, V.; Contreras, R. H.; Zaccari, D. G.; Snyder, J. P. J. *Am. Chem. Soc.* **2001**, *123*, 9162–9163. (28) Bryce, D. L.; Wasylishen, R. E. *J. Mol. Struct.* **2002**, *602*, 463–472; San

Fabian, J.; Westra Hoekzema, A. J. A. J. Chem. Phys. 2004, 121, 6268-6276.

Figure 7. Variable temperature ¹⁹F NMR spectra of 1,9-C₆₀F(CF₃) (376 MHz, chlorobenzene, δ (CFCl₃) = 0). The simulated spectra (program *gNMR*) show the first-order rate constant, *k*, for rotation of the CF₃ group between its three degenerate staggered conformations. The *k* value for 100 °C is only approximate. The peak marked with an asterisk is due to an unidentified impurity.

in harmony with the fast-exchange-limit spectrum observed for this isomer at -40 °C.

Variable-temperature 19 F NMR spectra of the 1,9-C₆₀F(CF₃) component of the mixture of isomers are shown in Figure 7. Significantly, the CF₃ resonance at room temperature was extremely broad and could easily have been missed if it were not for the fact that its presence was indicated by mass spectrometry as well as by the 1:3:3:1 quartet observed at room temperature for the cage C-F fluorine atom. In the fastexchange-limit spectrum at 100 °C, the CF3 resonance was a poorly resolved doublet, the cage C-F resonance was a quartet, and the ${}^{4}J_{FF}$ value was 30(1) Hz. Since an upper limit of 3 Hz can be placed on ${}^{4}J_{\text{BX}}$ in 1,9-C₆₀F(CF₃) at -40 °C (i.e., no coupling was observed), the weighted average of ${}^{4}J_{AX}$ and ${}^{4}J_{BX}$ should be ca. 29-30 Hz. The spectra were simulated using the program gNMR v. 5.0.1.0,29 giving the first-order rate constant, k, for rotation of the CF_3 group between its three equivalent staggered conformations at each temperature. An Eyring plot of $\ln(k/T)$ vs 1000 K/T was linear with an R^2 value of 0.999 (see Supporting Information). From this plot, the activation parameters $\Delta H^{\ddagger} = 46.8(7) \text{ kJ mol}^{-1}$ and $\Delta S_{\pm} = -19(3) \text{ J mol}^{-1}$ K⁻¹ were derived (the latter value was calculated assuming that the transmission coefficient is 1.0). The experimental ΔH^{\ddagger} is the same as the DFT-predicted barrier height discussed above, 46 kJ mol⁻¹.

(b) C_s - and C_1 - $C_{60}F_{17}$ (CF₃). These compounds were isolated and structurally characterized as a disordered solid solution by X-ray crystallography in 2000.¹³ Schlegel diagrams and fragments of their structures, including the results of new DFT calculations, are shown in Figure 8. Note that the CF₃ group is adjacent to one fullerene C–F moiety in the C_s isomer and to two C–F moieties in the C_1 isomer. Note also that the CF₃ group in the C_s isomer is almost perfectly staggered with respect to the cage C–C bonds, but the CF₃ group in the C_1 isomer is rotated a few degrees from the staggered conformation. Interestingly, it was reported that resonances due to the CF₃ groups were missing in ¹⁹F NMR spectra at 20 °C,¹³ a fact that caused

Figure 8. Schlegel diagrams and fragments of the structures of C_s - $C_{60}F_{17}$ -(CF₃) (top) and C_1 - $C_{60}F_{17}$ (CF₃) (bottom). The black circles and triangles in the Schlegel diagrams denote fullerene C–F and C–CF₃ moieties, respectively. The letters in the fragment drawings refer to the NMR assignments. For each F···F distance shown (Å), the upper value was calculated using the CIF file deposited with ref 13 (the esds range from 0.004 to 0.006 Å), and the lower, italicized value was calculated at the DFT level of theory.

this pair of compounds to be misidentified as $C_{60}F_{18}(CF_2)$ in the original report of their synthesis and isolation.³⁰ The variabletemperature NMR spectra of 1,9- $C_{60}F(CF_3)$ suggested to us that other fullerene(F)_n(CF₃)_m derivatives with adjacent F and CF₃ substituents might, in general, exhibit hindered CF₃ group rotation, and for this reason, we recorded variable-temperature ¹⁹F NMR spectra of a freshly prepared ca. 50:50 mixture of C_{s^-} and C_1 - $C_{60}F_{17}(CF_3)$.

At 80 °C, the highest temperature used, a broad near-fastexchange limit 32-Hz doublet was observed for the C_s isomer CF₃ group at δ -64.8 (not shown). A rotationally averaged doublet of doublets was not observed for the C_1 isomer CF₃

⁽²⁹⁾ Budzelaar, P. H. M. gNMR, 5.0.1.0; Adept Scientific: U.K., 2002.

⁽³⁰⁾ Avent, A. G.; Boltalina, O. V.; Lukonin, A. Y.; Street, J. M.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 2000, 1–3.

Table 2. ¹⁹F NMR δ and J_{FF} values for the CF₃ groups in 1,9- and 1,7-C₆₀F(CF₃) and in C_{s} - and C_{1} -C₆₀F₁₇(CF₃)^a

compd	temp, °C	F atom	δ_{obsd}	$\delta_{calc}{}^{b}$	ⁿ J _{FF} values, Hz ^c
1,9-C ₆₀ F(CF ₃)	100	A,B	-59.9		$1/3((2 \times {}^{2}J_{AX}) + {}^{2}J_{BX}) = 30$
	-40	А	-63.8	-65	${}^{2}J_{AB} = 113(1); {}^{4}J_{AX} = 43$
		В	-57.2	-57	${}^{2}J_{AB} = 113(1); {}^{4}J_{BX} \le 3$
$1,7-C_{60}F(CF_3)$	-40	А	-69.9	-72	$^{6}J_{\rm AX} \leq 3$
Cs-C60F17(CF3)	80	A,B	-64.8		$1/3((2 \times {}^{2}J_{AX}) + {}^{2}J_{BX}) = 32$
	-50	А	-67.0	-66	${}^{2}J_{AB} = 113; {}^{4}J_{AX} = 48$
		В	-60.5	-56	${}^{2}J_{AB} = 113; {}^{4}J_{BX} \le 2$
$C_1 - C_{60} F_{17} (CF_3)$	-30	А	-68.8	-68	${}^{2}J_{AB} = 107; {}^{2}J_{AC} = 113;$
					${}^{4}J_{AX} = 25; {}^{4}J_{AY} = 19$
		В	-60.4	-57	${}^{2}J_{AB} = 107; {}^{2}J_{BC} = 126; {}^{4}J_{BX} = 27$
		С	-63.2	-s62	${}^{2}J_{\rm AC} = 113; {}^{2}J_{\rm BC} = 126;$
					${}^{4}J_{\rm CY} = 5$ Hz; ${}^{5}J_{\rm CZ} = 5$ Hz

^{*a*} Spectra for 1,9- and 1,7-C₆₀F(CF₃) were recorded using a chlorobenzene solution (δ (int. C₆F₆) = -164.9). Spectra for C_s- and C₁-C₆₀F₁₇(CF₃) were recorded using a toluene solution. The F-atom labels are the same as those used in Figures 6 and 8. The δ values for cage C-F fluorine atoms in the two isomers of C₆₀F₁₇(CF₃) were the same as those reported in refs 13 and 30. ^{*b*} Chemical shifts calculated at the DFT level of theory. ^{*c*} All coupling constants are \pm 1 Hz.

Figure 9. The CF₃ region of 376.4 MHz ¹⁹F NMR spectra of a ca. 1:1 mixture of C_1 - and C_s -C₆₀F₁₇(CF₃) at -50 and -30 °C (toluene- d_8 , C₆F₆ internal standard (δ -164.9)). Resonances marked with asterisks are due to one or more unidentified impurities.

group at any temperature. At -30 °C, separate multiplets were observed for each of the CF₃ fluorine atoms in the C_1 isomer, as shown in Figure 9, but the slow-exchange limit had not yet been reached for the C_s isomer. At -50 °C, the slow-exchange limit CF₃ subspectrum was also observed for the C_s isomer, as also shown in Figure 9. Chemical shifts and J_{FF} values for the CF₃ portions of the spectra are listed in Table 2, which also includes the corresponding values for 1,9-C₆₀F(CF₃), the δ values for 1,7-C₆₀F(CF₃), and the DFT-calculated δ values for all four compounds.

The slow-exchange spectrum of C_s -C₆₀F₁₇(CF₃) at -50 °C is virtually congruent with the slow-exchange limit spectrum of 1,9-C₆₀F(CF₃): $J_{AB} = 113(1)$ Hz and $J_{BX} \approx 0$ Hz in both cases; J_{AX} is 43(1) Hz for 1,9-C₆₀F(CF₃) and 48(1) Hz for C_s -C₆₀F₁₇(CF₃); and $\delta_B - \delta_A$ is 6.6 ppm for 1,9-C₆₀F(CF₃) and 6.5 ppm for C_s -C₆₀F₁₇(CF₃). Furthermore, the DFT-predicted barriers to CF₃ rotation are 46 kJ mol⁻¹ for 1,9-C₆₀F(CF₃) and 44 kJ mol⁻¹ for C_s -C₆₀F₁₇(CF₃). Even though the structure of C_s -C₆₀F₁₇(CF₃)¹³ is severely distorted from the spheroidal shape of C₆₀ and (presumably) 1,9-C₆₀F(CF₃), the DFT F_A···F_X distances are 2.65 Å in 1,9-C₆₀F(CF₃) and 2.61 Å in C_s -C₆₀F₁₇-

Figure 10. Expansions of selected multiplets in the CF₃ region of 376.4 MHz ¹⁹F NMR spectra of a ca. 1:1 mixture of C_1 - and C_s -C₆₀F₁₇(CF₃) (toluene- d_8 , -30 °C, C₆F₆ int. std. (δ -164.9)). Only the C_1 -F_A, -F_B, and -F_C multiplets are shown.

(CF₃). All of this suggests that ¹⁹F NMR $\Delta\delta$ and J_{FF} values for CF₃ groups in fullerene(F)_n(CF₃)_m derivatives may depend primarily on the geometry of the F-C-C-CF₃ molecular fragment and not on global electronic and steric factors. This hypothesis will be examined further as additional compositionally pure fullerene(F)_n(CF₃)_m derivatives become available.

The slow-exchange limit spectrum of C_1 - $C_{60}F_{17}(CF_3)$ was very well resolved at -30 °C, as shown in Figure 10, even though the δ values for F_B in both isomers are nearly isochronous. This is due to the fact that the $\delta(F_B)$ multiplet for C_s -C₆₀F₁₇(CF₃) was significantly broadened at -30 °C and only became sharp at -50 °C, which is in harmony with the significantly larger DFT ΔH^{\ddagger} for the C_1 isomer, 54 kJ mol⁻¹, relative to the ΔH^{\ddagger} value for the C_s isomer, 44 kJ mol⁻¹. The assignment of the three multiplets due to the three CF₃ fluorine atoms is based on the DFT-calculated chemical shifts (see Table 2) as well as an analysis of the through-space $J_{\rm FF}$ values (see below). The F_A multiplet is a doublet of doublets of doublets of doublets, and all 16 peaks are discernible in Figure 10. The F_C multiplet also exhibits coupling to four different fluorine atoms, but the 16 peaks are not as well resolved because two of the $J_{\rm FF}$ values are only 5 Hz. The $F_{\rm B}$ multiplet is a doublet of doublets of doublets, and all eight peaks were observed.

Table 3 ¹⁹F NMR Parameters for Selected Compounds Containing Slow-Exchange Limit CE₂ Groups

compd	² J _{FF} , Hz	temp, °C ^a	ΔH ‡, kJ mol $^{-1}$ b	$\Delta\delta$, ppm	ref
$1,9-C_{60}F(CF_3)$	113	-40	46.8(7) [46] ^c	6.6	this work
C_{s} -C ₆₀ F ₁₇ (CF ₃)	113	-50	[44] ^c	6.5	this work
$C_1 - C_{60} F_{17} (CF_3)$	107, 113, 126	-25	[54] ^c	2.8, 5.6	this work
gauche $1,2-C_2Cl_4(CF_3)_2$	105, 116, 124	-150	ca. 33^d	3.7, 8.7	31
(SF ₅) ₂ CHCF ₃	115	-60	44.7	11.5	32
$1-R-2, 6-(CF_3)_2-4-C_6H_2SiR'_3)^e$	124	-96	7.2	23	
CF ₃ CFCl ₂	115	-170	23(1)	4.7	33
CF ₃ CHCl ₂	113	-173	22(1)	11.2	33
CF ₃ CCl ₂ CF ₃	108	-140^{f}	21^{g}	2.3	34
CF ₃ CF ₂ I	97	-150^{f}	21^{g}	13.0	34
$PCH_3(CF_3)_2(OMe)_2^h$	112	-120	2.7	35	
$CF_3CPh_2(2-C_6H_4NH_2)$	125, 127 ⁱ	-60	4.1^{i}	36	
$Ni(Br_8(CF_3)_4$ -TPP) ^j	114	$+5^{f}$	47^k	13.1	37
MeOCPh(CF ₃)COCl	109, 113, 114	-128	34(1)	4.4, 4.8	38
1,4-(OMe) ₂ -9-CF ₃ -triptycene	137	+150	>105	1.2	47

^a Temperature at which a slow-exchange limit spectrum was obtained unless otherwise noted. ^b Enthalpy of activation for CF₃ rotation. ^c The value in square brackets was calculated at the DFT level of theory. ^d Estimated value obtained by choosing an approximate coalescence temperature. $^{e}R = C(CF_{3})_{2}OH$; R' = i-Pr. ^f Coalescence temperature. ^g Errors for ΔH_{L}^{f} values were not given in this study, but a minimum estimate based on the published Eyring plots is $\pm 4 \text{ kJ mol}^{-1}$. A having CF₃ groups. ABC spin system with rapid interconversion of F_A and F_B via aryl group reorientation (i.e., racemization) even at the lowest temperature studied; ${}^{2}J_{AB}$ could not be observed due to rapid racemization; in this case $\Delta\delta$ is the difference between $\delta(F_{C})$ and the average of $\delta(F_{A})$ and $\delta(F_B)$. $^{j}Br_8(CF_3)_4$ -TPP = 2,3,7,8,-12,13,17,18-Br_8-5,10,15,20-(CF_3)_4-tetraphenylporphyrinate(2-) dianion. $^{k}\Delta G_{\pm}^{\dagger}$ value at the coalescence temperature.

Portions of the ¹⁹F NMR spectra that include the resonances for the 17 cage C-F fluorine atoms are not shown because they have been previously published.^{13,30}

In previous reports of their synthesis, a ca. 2:1 mixture of $C_{\rm s}$ - and $C_{\rm 1}$ - $C_{60}F_{\rm 17}$ (CF₃), respectively,^{13,30} was observed. In this work, a ca. 1:1 mixture was isolated. In any event, the difference in $\Delta G_{\rm f}$ values for these two compounds must be small. Our DFT $\Delta\Delta H_{\rm f}^{\circ}$ value for the two isomers is 8.4 kJ mol⁻¹, with the C_s isomer more stable. The $\Delta\Delta G_f$ value at the reaction temperature would be expected to be about half this value due to a statistical factor favoring the formation of the C_1 isomer.

(c) Comparison with Other Examples of Hindered CF₃ Rotation. Of the thousands of known compounds containing CF₃ groups, before this work only 27 of them were reported to exhibit slow-exchange-limit ¹⁹F NMR spectra, and all but two of these required temperatures that ranged from -60 °C to -190 °C.^{23,24,31-38} Representative compounds are listed in Table 3 (see Supporting Information for a complete list of all compounds). The 113-Hz ${}^{2}J_{AB}$ value exhibited by 1,9-C₆₀F(CF₃) and $C_{\rm s}$ -C₆₀F₁₇(CF₃) is in the middle of the 97–137-Hz range for the previously reported compounds, while the 105-126-Hz range of ${}^{2}J_{FF}$ values for C_{1} - $C_{60}F_{17}$ (CF₃) spans a significant portion of the previous range. The asymmetric isomer C_1 - $C_{60}F_{17}$ -(CF₃) is only the seventh example of an F_AF_BF_C CF₃ group for which all three ${}^{2}J_{\text{FF}}$ values can be observed. Except for two triptycene derivatives, C_1 -C₆₀F₁₇(CF₃) has the highest enthalpy of activation for CF₃ rotation, 54 kJ mol⁻¹, of the 30 compounds studied to date.

Through-Space J_{FF} Coupling. As in our previous work with C_1 - $C_{60}(CF_3)_4$, C_1 - $C_{60}(CF_3)_6$, and C_1 - $C_{60}(CF_3)_{10}$, we propose that through-space F···F coupling is the largest contribution to the observed ${}^{4}J_{FF}$ and ${}^{5}J_{FF}$ values in 1,9-C₆₀F(CF₃), C_s-C₆₀F₁₇-

- (31) Weigert, F. J.; Roberts, J. D. J. Am. Chem. Soc. 1968, 90, 3577-3578.
- (31) Weigert, F. J.; Roberts, J. D. J. Am. Chem. Soc. 1968, 90, 3577–3578.
 (32) Gerhardt, R.; Seppelt, K. Chem. Ber. 1988, 122, 463–466.
 (33) Brunelle, J. A.; Letendre, L. J.; Weltin, E. E.; Brown, J. H.; Bushweller, C. H. J. Phys. Chem. 1992, 96, 9225–9232.
 (34) Weigert, F. J.; Mahler, W. J. Am. Chem. Soc. 1972, 94, 5314–5318.
 (35) The, K. I.; Cavell, R. G. Inorg. Chem. 1977, 16, 1463–1470.
 (36) Strekowski, L.; Lee, H.; Lin, S.-Y.; Czarny, A.; Van Derveer, D. J. Org. Chem. 2000, 65, 7700-7706.
- Chem. 2000, 65, 7703-7706.
- (37) Nelson, N. Y.; Medforth, C. J.; Nurco, D. J.; Jia, S.-L.; Shelnutt, J. A.; Smith, K. Chem. Commun. 1999, 2071-2072.
- (38) Khan, M. A.; Tavares, D. F.; Rauk, A. Can. J. Chem. 1982, 60, 2451-2455.

(CF₃), and C_1 -C₆₀F₁₇(CF₃). The term "through-space coupling" is defined here as Fermi contact coupling (FCC) by direct overlap of fluorine atom orbitals (primarily lone-pair orbitals) as opposed to FCC through the σ framework of a molecule, a definition that has been used by NMR spectroscopists for more than 40 years.⁴⁰ It is now widely accepted that significant Jcoupling between proximate fluorine nuclei (i.e., ≤ 3.2 Å apart) that are separated by four or more bonds (i.e., $\ge 4 J_{FF}$) is mediated predominantly through space (as just defined) and not through the network of covalent bonds that separate the fluorine atoms.^{25,26,28,41-44} The most convincing case is the 17 \pm 2 Hz $^{398}J_{\rm FF}$ coupling observed⁴⁵ for the fluorine atoms on 6-fluorotryptophan residues (Trp5 and Trp133) in a dihydrofolate reductase-NADPH-MTX protein complex, which Oldfield and co-workers later showed was mediated entirely by through-space coupling $(F \cdot \cdot \cdot F = 2.98 \text{ Å}).^{25}$

Experimental and theoretical studies have shown that 37-99 Hz $\ge 4J_{FF}$ values can occur when two C-F bonds are oriented so that the F···F distance is between 2.7 and 2.5 Å.^{25-27,42,44,46} Given that the magnitude of the $J_{\rm FF}$ through-space component is known to depend on the relative orientations of the C-F bonds, the five ${}^{4}J_{FF}$ values observed for 1,9-C₆₀F(CF₃), C_s- $C_{60}F_{17}(CF_3)$, and C_1 - $C_{60}F_{17}(CF_3)$ with F···F distances between 2.61 and 2.71 Å, which range from 19 to 48 Hz, are consistent

- (39) Kareev, I. E.; Kuvychko, I. V.; Lebedkin, S. F.; Miller, S. M.; Anderson, O. P.; Seppelt, K.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2005, 127, 8362-8375
- (40) (a) Petrakis, L.; Sederholm, C. H. J. Chem. Phys. **1961**, 35, 1243–1248;
 Brey, W. S.; Ramey, K. C. J. Chem. Phys. **1963**, 39, 844-. (b) Mallory, F. B.; Mallory, C. W.; Fedarko, M.-C. J. Am. Chem. Soc. **1974**, 96, 3536– 3542.
- (41) (a) Schwarz, R.; Seelig, J.; Kunnecke, B. Magn. Reson. Chem. 2004, 42, 512-517. (b) Contreras, R. H.; Peralta, J. E.; Giribet, C. G.; Ruiz de Azua, M. C.; Facelli, J. C. In Annual Reports on NMR Spectroscopy; Academic
- M. C.; Facelli, J. C. In Annual Reports on NMR Spectroscopy; Academic Press Ltd.: London, 2000; Vol. 41, pp 55–184.
 (42) Mallory, F. B.; Mallory, C. W.; Butler, K. E.; Lewis, M. B.; Xia, A. Q.; Luzik, J., E. D.; Fredenburgh, L. E.; Ramanjulu, M. M.; Van, Q. N.; Franci, M. M.; Freed, D. A.; Wray, C. C.; Hann, C.; Nerz-Stormes, M.; Carroll, P. J.; Chirlian, L. E. J. Am. Chem. Soc. 2000, 122, 4108–4116.
 (43) Bartolome, C.; Espinet, P.; Martin-Alvarez, J. M.; Villafane, F. Eur. J. Inorg. Chem. 2004, 2326–2337.
 (44) Cavagna, F.; Schumann, C. J. Magn. Reson. 1976, 22, 333–344.
 (45) Kimber, B. J. Genety, J. Roberts, G. C. K.; Birdsall, B.; Griffiths, D. V.;

- (45) Kimber, B. J.; Feeney, J.; Roberts, G. C. K.; Birdsall, B.; Griffiths, D. V.; Burgen, A. S. V. *Nature* **1978**, *271*, 184–185.
- (a) Ernst, L.; Ibrom, K.; Marat, K.; Mitchell, R. H.; Bodwell, G. J.; Bushnell, G. W. Chem. Ber. 1994, 127, 1119-1124. (b) Ernst, L.; Ibrom, K. Angew. Chem., Int. Ed. Engl. 1995, 34, 1881-1882.
- Toyota, S.; Watanabe, Y.; Yoshida, H.; Oki, M. Bull. Chem. Soc. Jpn. 1995, 68, 2751-2756. (47)

Figure 11. Plots of $\geq 4J_{FF}$ vs F···F distance and selected $\geq 4J_{FF}$ values (F···F = 2.65–2.71 Å) vs FC···CF torsion angle for 1,9-C₆₀F(CF₃), C_s -C₆₀F₁₇(CF₃), and C_1 -C₆₀F₁₇(CF₃). The distances and angles are from DFT calculations, but those for C_s -C₆₀F₁₇(CF₃) and C_1 -C₆₀F₁₇(CF₃) are also very similar to the corresponding values from the disordered structure of a mixture of these two isomers of C₆₀F₁₇(CF₃).

with predominantly through-space coupling. A plot of F···F distance vs ${}^{4,5}J_{\rm FF}$ for these three compounds is displayed in Figure 11, which also shows some of the relative orientations of the pairs of C-F bonds as well as the F-C···C-F torsion angle dependence for the 19, 25, and 27 Hz ${}^{4}J_{\rm FF}$ values that correspond to F···F distances of 2.65, 2.66, and 2.71 A, respectively. In addition to a possible torsional angle dependence, through-space $J_{\rm FF}$ coupling in general will probably be found to be sensitive to the "tilt angles" of the two C-F bonds, as illustrated in Figure 12. The pairs of C-F bonds shown for C_1 -C₆₀F₁₇(CF₃) and C_1 -C₆₀(CF₃)₁₀ have nearly identical F···F distances and F-C···C-F torsion angles, but they have significantly different tilt angles. The F-C···C-F framework in C_1 -C₆₀F₁₇(CF₃) is a parallelogram, and ⁴J_{FF} is 19(1) Hz. In contrast, the F-C···C-F framework in C_1 -C₆₀(CF₃)₁₀ is a trapezoid and ${}^{7}J_{\text{FF}}$ is nearly four times larger, 75(2) Hz (i.e., 9 \times 8.4(2) Hz).³⁹

A more complete analysis of the coupling constants in 1,9-C₆₀F(CF₃), C_s -C₆₀F₁₇(CF₃), and C_1 -C₆₀F₁₇(CF₃) will be postponed until the J_{FF} values reported in this paper have been calculated at the highest appropriate level of theory^{16,26–28,41,42} (at which time additional results for related compounds may also be available). Here we will conclude by pointing out why the J_{FF} results listed in Table 2 are unique as well as significant as far as the theory of through-space nuclear spin-spin coupling is concerned. First, the majority of experimental $^{\geq 4}J_{FF}$ values for which through-space coupling is thought to be the major component involve fluorine atoms attached to sp²-hybridized carbon atoms, whereas all of the $^{\geq 4}J_{FF}$ values in Table 2 involve

Figure 12. Similarities and differences for selected pairs of C–F bonds in the structures of C₁-C₆₀F₁₇(CF₃) (left) and 1,3,7,10,14,17,23,28,31,40-C₆₀(CF₃)₁₀ (right). The ¹⁹F ⁴J_{AY} and ⁷J_{FF} values involving F₆₂₃ and F₆₆₁ are 19(1) and 75(2) Hz, respectively.

carbon atoms that are sp³ hybridized. More importantly, the slow-exchange limit spectra have provided an unambiguous set of $\ge 4 J_{\text{FF}}$ values for three different compounds that can be correlated with DFT-predicted or X-ray diffraction derived distances and angles and an unambiguous set of ${}^{2}J_{FF}$ values that can serve as an internal standard for future $J_{\rm FF}$ calculations. Furthermore, C_1 - $C_{60}F_{17}(CF_3)$ alone exhibits six ${}^4J_{FF}$ values (including ${}^{4}J_{\rm BY} = {}^{4}J_{\rm CX} \approx 0$) that range from ca. 0 to 27 Hz for nearly identical sets of F–C–C–F σ -bond arrays (albeit with different torsion angles), which strongly suggests that any contributions to $J_{\rm FF}$ through the σ framework must be small. Finally, the possible conformations of 1,9- $C_{60}F(CF_3)$, C_s - $C_{60}F_{17}$ -(CF₃), and C_1 -C₆₀F₁₇(CF₃) in solution, where the J_{FF} values were determined, depend only on a specific C-C single bond rotational degree of freedom involving two otherwise rigid moieties (i.e., $F_3C-C_{60}F_n$) and are therefore more reliably known than solution conformations of many compounds that exhibit nonzero $\ge 4 J_{FF}$ values and that involve pairs of C-F bonds connected by an array of σ bonds.

Acknowledgment. This work was supported by the U.S. NSF (CHE-9905482), the Volkswagen Foundation (I-77/855), the Russian Foundation for Basic Research (Project No. 05-03-33051-a), INTAS grant YS 2004-83-3316 to INI, and an AvH Foundation Freidrich Bessel Award to O.V.B. We thank Prof. Dr. M. M. Kappes for his generous support, Dr. Polyakova N. V. for direct fluorination work, and Dr. A. V. Abramenkov for helpful discussions and assistance with CF₃ rotational energy level calculations.

Supporting Information Available: Total energies and Cartesian coordinates from DFT study of 1,9- and 1,7- $C_{60}F(CF_3)$ and C_{s} - and C_1 - $C_{60}F_{17}(CF_3)$, complete ref 42, MALDI mass spectra of $C_{60}F_5(CF_3)$ and $C_{60}F_7(CF_3)$, the Eyring plot for 1,9- $C_{60}(F_3)$, and a complete list of ¹⁹F NMR parameters for compounds with slow-exchange limit CF₃ groups (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA051954Y